Digital Autoland Control Laws Using Quantitative Feedback Theory and Direct Digital Design
نویسندگان
چکیده
Autoland controllers are prevalent for both large and small/micro unmanned aerial vehicles, but very few are available for medium-sized unmanned air vehicles. These vehicles tend to have limited sensors and instrumentation, yet must possess good performance in the presence of modeling uncertainties and exogenous inputs such as turbulence. Quantitative feedback theory has been reported in the literature for inner-loop control of several aircraft problems, but not for outer-loop control or for automatic landing. This paper describes the synthesis and development of an automatic landing controller for medium-sized unmanned aerial vehicles, using discrete quantitative feedback theory. Controllers for the localizer, glideslope tracker, and automatic flare are developed, with a focus on outer-loop synthesis and robustness with respect to model uncertainty. Linear, nonreal-time, six-degree-of-freedom Monte Carlo simulation is used to compare the quantitative feedback theory controller with a baseline proportional–integral controller in several still-air and turbulent-air landing scenarios. Results presented in the paper show that the quantitative feedback theory controller provides superior performance robustness to the proportional–integral controller in turbulent-air conditions when model uncertainties are present. It is therefore concluded to be a promising candidate for an autoland controller for unmanned air vehicles.
منابع مشابه
Digital Autoland Control Laws Using Direct Digital Design and Quantitative Feedback Theory
Manually landing an unmanned aerial vehicle presents unique challenges since unmanned vehicle pilots require extensive training to become proficient in the landing task. Operators must therefore choose between a pilot controlling the vehicle from a ground station, or procurement of an automatic landing system. Although several autoland controllers exist for small or micro unmanned vehicles and ...
متن کاملActive control vibration of circular and rectangular plate with Quantitative Feedback Theory (QFT) Method
Natural vibration analysis of plates represents an important issue in engineering applications. In this paper, a new and simplify method for vibration analysis of circular and rectangular plates is presented. The design of an effective robust controller, which consistently attenuates transverse vibration of the plate caused by an external disturbance force, is given. The dynamics of the plate i...
متن کاملDirect Probabilistic Design of Reinforced Concrete Flexural Sections Using Digital Simulation
متن کامل
Direct Probabilistic Design of Reinforced Concrete Flexural Sections Using Digital Simulation
متن کامل
Improvement of position measurement for 6R robot using magnetic encoder AS5045
Recording the variation of joint angles as a feedback to the control unit is frequent in articulated arms. In this paper, magnetic sensor AS5045, which is a contactless encoder, is employed to measure joint angles of 6R robot and the performance of that is examined. The sensor has a low volume, two digital outputs and provides a high resolution measurement for users; furthermore its zero positi...
متن کامل